Deconstructing the Welch Equation Using $p$-adic Methods
نویسندگان
چکیده
The Welch map x → g is similar to the discrete exponential map x → gx, which is used in many cryptographic applications including the ElGamal signature scheme. This paper analyzes the number of solutions to the Welch equation: g ≡ x (mod pe) where p is a prime and g is a unit modulo p, and looks at other patterns of the equation that could possibly be exploited in a similar cryptographic system. Since the equation is modulo pe, where p is a prime number, p-adic methods of analysis are used in counting the number of solutions modulo pe. These methods include: p-adic interpolation, Hensel’s lemma and Chinese Remainder Theorem.
منابع مشابه
Positive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملp-adic Shearlets
The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.
متن کامل$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملar X iv : n lin / 0 10 30 02 v 1 [ nl in . S I ] 4 M ar 2 00 1 Lotka - Volterra Equation over a Finite Ring
Discrete Lotka-Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with the non-Archimedean valuations and the space given by taking ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations in the previous report (solv-int/9906011). In this article, using the natural projection from p-adic intege...
متن کاملAnalysis Of Exact Solution Of Linear Equation Systems Over Rational Numbers By Parallel p-adic Arithmetic
We study and investigate the p-adic arithmetic along with analysis of exact solution of linear equation systems over rational numbers. Initially we study the basic concepts involving the p-adic numbers and why they form a better representation. After that we describe a parallel implementation of an algorithm for solving systems of linear equations over the field of rational number based on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.05880 شماره
صفحات -
تاریخ انتشار 2015